VIII. Decay Epoch of the "Tiangong-1" Spacecraft. January 30, 2018

Andrey I. Nazarenko, Professor, retired

The materials presented below represent a continuation of the text under the same name, posted on the "satmotion.ru" website in November – December 2017 and in January 2018 [1–7].

1. The results for January 30, 2018

For 56 preceding time instants of attribution of measurements, the SC orbital parameters were updated over the array of initial measurements, which were presented by the well-known TLEs [8]. The results of the most recent updating (for ID 8) are presented below. Here the coordinates (in km) and velocities (in km/sec) are presented in the Topocentric Equatorial Coordinate System (as in TLEs).

21943.55228221 is the modified Julian date = January 29, $13^{h} 15^{m} 17.18^{s}$

-3819.656631 - x -5440.760284 - y -0.547232 - z 4.6493367260 - Vx -3.2755974384 - Vy 5.2616921748 - Vz 0.00289 - Sb (ballistic coefficient, m²/kg).

Figure 1 presents the ballistic coefficient estimates, the values of the geomagnetic disturbance index (Kp) and the minimized criterion for all preceding time instants of orbital parameters updating after January 19, 2018.

Figure 1. Values of ballistic coefficient, Kp and minimized criterion

The estimates of ballistic coefficient (Sb) have changed within the range from 0.00275 to 0.00333 m²/kg, i.e. 1.2 times. The highest drag variations have been observed during January 22 (increase) and 28 (decrease), which reflects the Kp index variations in previous points in time. The black line marks the Sb estimates averaged over some preceding time interval (the sliding average). On the time interval after January 19 these estimates decreased by 3.7%.

The values of a minimized criterion, presented in the figure, have a meaning of the ratio of residuals to the calculated RMS of errors, averaged over the time interval of measurements. These values depend on the magnitude of current residuals and vary from 0.46 to 1.21. Under perfect tuning of algorithm parameters, their average value should be close to 1. The averaged value of the criterion (0.95) is close to the ideal value.

The last smoothed ballistic coefficient value ($0.00309 \text{ m}^2/\text{kg}$) was used as a constant value in the prediction of SC motion until its entering the dense layers of the atmosphere. The relevant prediction results for the aforementioned initial data (ID 8) are shown in figure 2.

Reentry Information.

Tianging-1 is predicted to reenter on March 30, 2018 ±4 days.

Figure 3 presents the results of all 76 preceding determinations of Tiangong-1 SC reentry time after January 01. The average value of reentry time is \approx March 30. Deviations from the average value do not exceed 10% of remaining lifetime. The RMS of errors amounted 2.8%, which is several times lower than the traditional

estimates of errors. Removal of reentry time in early January was in line with the decrease of the average values of the Sb in this period by 15%.

Figure 3. All determinations of Tiangong-1 SC reentry time in 2018

2. Recent publication of other authors

a) Tiangong-1 is predicted to reenter in late March 2018 ± 2 weeks.

This prediction was performed by The Aerospace Corporation on 2018 January 17.

b) Data by V.S. Yurasov (private message).

The TLE processing results over the preceding week interval and the forecast of the SC motion until reentry:

Initial data time	Results Atmospheric model							
		GOST 1984	NRLMSIS	GOST 2004				
November 9, 2017	t reentry	March 10 02 ^h	March 9 06 ^h	March 7 $00^{\rm h}$				
	Sb, m^2/kg	0.00384	0.00386	0.00368				
December 1, 2017	t reentry	March 12 03 ^h	March 9 18 ^h	March 11 22 ^h				
	Sb, m^2/kg	0.00361	0.00389	0.00360				
December 9, 2017	t reentry	March 14 00 ^h	March 16 12 ^h	March 18 06 ^h				
	Sb, m^2/kg	0.00367	0.00373	0.00347				
December 19, 2017	t reentry	March 19 14 ^h	March 21 03 ^h	March 17 14 ^h				
	Sb, m^2/kg	0.00349	0.00361	0.00359				
December 28, 2017	t reentry	March 19 20 ^h	March 20 18 ^h	March 20 15 ^h				
	Sb, m^2/kg	0.00347	0.00369	0.00346				
January 12, 2018	t reentry	March 28 10 ^h	March 30 22 ^h	March 30 10 ^h				
	Sb, m^2/kg	0.00331	0.00341	0.00325				
January 27, 2018	t reentry	March 30 09 ^h	April 02 20 ^h	March 31 04 ^h				
	Sb, m^2/kg	0.00334	0.00334	0.00333				

c) ESA

Current #Tiangong1 reentry forecast updated by ESA's Space Debris Office: Not much change from last week! Estimated around 18 March to 12 April, but note this is highly variable. See http://blogs.esa.int/ .../20.../01/12/tiangong-1-reentry-updates/

The current reentry uncertainty window is shown below

Cesa

d) Space Track

Show 10			entries				Search All Columns 37820							
NORAD CAT ID \$	SATNAME	0	INTLDES	1	COUNTRY	÷	MSG_EPOCH	DECAY_EPOCH \$	RCS		SOURCE	¢	TLE	Туре
37820	TIANGONG 1		2011-0534		PRC		2018-01-24 16:00:44	2018-03-12 0:00:00	LARGE		60day_msg		TLE	Prediction
37820	TIANGONG 1		2011-0534		PRC		2017-12-27 16:48:42	2018-02-22 0.05:00	LARGE		60day_msg		TLE	Prediction
NCIRAD CAT IE	SATNAME		INTLOES.		COUNTRY		MSIG_EPIOCH	DECAY_EPOCI	RCS.		SOURCE			Туре

References

- 1. A.I. Nazarenko. Decay Epoch of the "Tiangong-1" Spacecraft. November 1, 2017. Site satmotion.ru
- 2. A.I. Nazarenko. Decay Epoch of the "Tiangong-1" Spacecraft. November 15, 2017. Site satmotion.ru
- 3. A.I. Nazarenko. Decay Epoch of the "Tiangong-1" Spacecraft. December 1, 2017. Site satmotion.ru
- 4. A.I. Nazarenko. Decay Epoch of the "Tiangong-1" Spacecraft. December 10, 2017. Site satmotion.ru
- 5. A.I. Nazarenko. Decay Epoch of the "Tiangong-1" Spacecraft. December 20, 2017. Site satmotion.ru

- 6. A.I. Nazarenko. Decay Epoch of the "Tiangong-1" Spacecraft. December 30, 2017. Site satmotion.ru
- A.I. Nazarenko. Decay Epoch of the "Tiangong-1" Spacecraft. January 15, 2018. Site satmotion.ru
- 8. <u>http://www.space-track.org</u>