
Publishing Group URSS has issued the new monograph «Stochastic Astrodynamic Problems. Mathematical methods and solving algorithms". The announcement of publishing house, abstract and table of contents are presented below. It's possible to order the book on URSS website (link) or to buy it in a bookstore at Moscow, Nakhimovsky prospect, 56 (metro station Profsouznaya), phone number +7 499 7242545, Mo-Fr 9:00-19:00, Sa,Su 12:00-19:00.

Abstract

The new monograph is based on previous author's experience in astrodynamics problem solving. The book contains conclusions based on the investigation results obtained by the author over 55 years of work (1960-2015) in the field of applied mathematics methods implementation for solving astrodynamics problems. During this period, the computing power dramatically increased and it became a crucial factor for new applied mathematical models development. During these years, the author has improved the methods and developed new algorithms.

The author collected and presented variety of modern mathematical approaches and methods that applies for astrodynamics.

The book is addressed to a wide audience: specialists, graduate students, researchers engaged in the development of mathematical methods and algorithms for solving cosmic dynamic problems.

Stochastic tasks of astrodynamics.

Mathematical methods and algorithms for solving

A.I. Nazarenko

Table of content

Review	of Prof. Lysenko
Author's	preface
Summary introduction. Applied mathematics	
Section	Title
1	Mechanism with non-linear elastic links and variables of flight
2	Selection of updated parameters for the polynomial model of system
3	Nodal period and the time of the Equator crossing
4	Averaged equations characterizing the evolution of the orbital elements
5	Prediction of correlation matrix of error state vector
6	Statistical characteristics of satellites gravitational perturbations
7	Optimum filtering of measurements for determination and prediction of spacecraft orbits. Recurrent processing of measurements
8	Optimal filtering of measurements for determination and prediction of spacecraft orbits. Joint processing of measurements
9	Comparison of various methods for orbital measurements processing
10	State transition matrix of relative motion for the noncircular orbit
11	Step-by-step method for the optimal forecasting Gaussian random process
12	Optimal filtering measurement of Gaussian random process in continuous time
13	Step-by-step method for constructing equations of autoregression for vector Gaussian random process.
14	Constructing spatial distribution of debris spatial density
15	Statistical distribution of magnitude and direction of velocity vector of objects
16	Evaluation of the collision probability of space objects of artificial origin
17	Probability of mutual collisions between objects of various sizes
18	Prediction of the space debris spatial distribution on the basis of the evolutionary equations
19	Assessment of the consequences of mutual collisions
Conclusion	
Major publications author issues	
· •	