Applied mathematics. History of some formulas

A.I. Nazarenko

Table of Contents

Chapter	Name	Pages
	Introduction	12
1	Motion equation of mechanism with the nonlinear elastic components and the variable flywheel masses	10
2	Selection of the refined parameters of the polynomial model of some system	11
3	Draconic period and the time of the equator intersection	10
4	Averaged equations, which characterize the evolution of the orbital elements of Earth satellites	8
5	Statistical characteristics of the gravitational disturbances of Earth satellites	19
6	Equations for calculating the statistical characteristics of motion prediction errors and their solution	15
7	Recurrent filtration of the measurements of the dynamic system, subjected to the influence of the disturbances in the form of colored noise	13
8	Comparison of the accuracy of orbital parameters, obtained with the use of various methods of the measurement processing	12
9	Joint processing of measurements of the dynamic system, subjected to the influence of the disturbances in the form of colored noise	12
10	Matrix of the particular derivatives of the satellite state vector on the initial values for the relative motion (elliptical orbits)	12
11	Recurrent method of optimum forecasting the Gaussian random process	11
12	Optimum filtration of the measurements of Gaussian random process on the measurements in the continuous time.	10
13	Recurrent method of constructing the auto regression equations for the random vector processes	17
14	Construction of the spatial density distribution of space debris	14
15	Procedure for the constructing the statistical distribution of value and direction of the space debris velocity vectors	10
16	Estimating the probability and conditions of the Earth satellite collisions with space debris	18
17	Estimating the probability of mutual collisions of the objects of different size in the near-Earth outer space	13
18	Equations for predicting the space debris statistical distribution for the height	16
19	Estimating the consequences of space debris mutual collisions	15
20	Conclusion	
	Basic publications of the author on the questions examined	